Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Database
Language
Document Type
Year range
1.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.07.329771

ABSTRACT

SARS-CoV-2 has emerged as pandemic all over the world since late 2019. In this study, we investigated the diversity of the virus in the context of SARS-CoV-2 spread in India. Full-length SARS-CoV-2 genome sequences of the circulating viruses from all over India were collected from GISAID, an open data repository, until 25thJuly, 2020. We have focused on the non-synonymous changes across the genome that resulted in amino acid substitutions. Analysis of the genomic signatures of the non-synonymous mutations demonstrated a strong association between the time of sample collection and the accumulation of genetic diversity. Most of these isolates from India belonged to the A2a clade (63.4%) which has overcome the selective pressure and is spreading rapidly across several continents. Interestingly a new clade I/A3i has emerged as the second-highest prevalent type among the Indian isolates, comprising 25.5% of the Indian sequences. Emergence of new mutations in the S protein was observed. Major SARS-CoV-2 clades in India have defining mutations in the RdRp. Maximum accumulation of mutations was observed in ORF1a. Other than the clade-defining mutations, few representative non-synonymous mutations were checked against the available crystal structures of the SARS-CoV-2 proteins in the DynaMut server to assess their thermodynamic stability. We have observed that SARS-CoV-2 genomes contain more uracil than any other nucleotide. Furthermore, substitution of nucleotides to uracil was highest among the non-synonymous mutations observed. The A+U content in SARS-CoV-2 genome is much higher compared to other RNA viruses, suggesting that the virus RdRp has a propensity towards uracil incorporation in the genome. This implies that thymidine analogues may have a better chance to competitively inhibit SARS-CoV-2 RNA replication than other nucleotide analogues.

2.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.07.328302

ABSTRACT

Human monoclonal antibodies are safe, preventive and therapeutic tools, that can be rapidly developed to help restore the massive health and economic disruption caused by the Covid-19 pandemic. By single cell sorting 4277 SARS-CoV-2 spike protein specific memory B cells from 14 Covid-19 survivors, 453 neutralizing antibodies were identified and 220 of them were expressed as IgG. Up to 65,9% of monoclonals neutralized the wild type virus at a concentration of >500 ng/mL, 23,6% neutralized the virus in the range of 100 - 500 ng/mL and 9,1% had a neutralization potency in the range of 10 - 100 ng/mL. Only 1,4% neutralized the authentic virus with a potency of 1-10 ng/mL. We found that the most potent neutralizing antibodies are extremely rare and recognize the RBD, followed in potency by antibodies that recognize the S1 domain, the S-protein trimeric structure and the S2 subunit. The three most potent monoclonal antibodies identified were able to neutralize the wild type and D614G mutant viruses with less than 10 ng/mL and are good candidates for the development of prophylactic and therapeutic tools against SARS-CoV-2. One Sentence SummaryExtremely potent neutralizing human monoclonal antibodies isolated from Covid-19 convalescent patients for prophylactic and therapeutic interventions.


Subject(s)
COVID-19
3.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.07.330324

ABSTRACT

Coronaviruses, like SARS-CoV-2, encode a nucleotidyl transferase in the N-terminal NiRAN domain of the non-structural protein (nsp) 12 protein within the RNA dependent RNA polymerase (RdRP). Though the substrate targets of the viral nucleotidyl transferase are unknown, NiRAN active sites are highly conserved and essential for viral replication. We show, for the first time, the detection and sequence location of GMP-modified amino acids in nidovirus RdRP-associated proteins using heavy isotope-assisted MS and MS/MS peptide sequencing. We identified lys-143 in the equine arteritis virus (EAV) protein, nsp7, as a primary site of nucleotidylation in vitro that uses a phosphoramide bond to covalently attach with GMP. In SARS-CoV-2 replicase proteins, we demonstrate a unique O-linked GMP attachment on nsp7 ser-1, whose formation required the presence of nsp12. It is clear that additional nucleotidylation sites remain undiscovered, which includes the possibility that nsp12 itself may form a transient GMP adduct in the NiRAN active site that has eluted detection in these initial studies due to instability of the covalent attachment. Our results demonstrate new strategies for detecting GMP-peptide linkages that can be adapted for higher throughput screening using mass spectrometric technologies. These data are expected to be important for a rapid and timely characterization of a new enzymatic activity in SARS-CoV-2 that may be an attractive drug target aimed at limiting viral replication in infected patients.


Subject(s)
Infections , Multiple Sclerosis , Arteritis
4.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.07.329748

ABSTRACT

Microglia, the resident brain immune cells, play a critical role in normal brain development, and are impacted by the intrauterine environment, including maternal immune activation and inflammatory exposures. The COVID-19 pandemic presents a potential developmental immune challenge to the fetal brain, in the setting of maternal SARS-CoV-2 infection with its attendant potential for cytokine production and, in severe cases, cytokine storming. There is currently no biomarker or model for in utero microglial priming and function that might aid in identifying the neonates and children most vulnerable to neurodevelopmental morbidity, as microglia remain inaccessible in fetal life and after birth. This study aimed to generate patient-derived microglial-like cell models unique to each neonate from reprogrammed umbilical cord blood mononuclear cells, adapting and extending a novel methodology previously validated for adult peripheral blood mononuclear cells. We demonstrate that umbilical cord blood mononuclear cells can be used to create microglial-like cell models morphologically and functionally similar to microglia observed in vivo. We illustrate the application of this approach by generating microglia from cells exposed and unexposed to maternal SARS-CoV-2 infection. Our ability to create personalized neonatal models of fetal brain immune programming enables non-invasive insights into fetal brain development and potential childhood neurodevelopmental vulnerabilities for a range of maternal exposures, including COVID-19.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL